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Spatial transcriptomics (ST) measures gene expression for 
individual cells and pairs these measurements with the 
positions of cells within a tissue sample. This opens the door 
for statistical methods to explore how neighboring cells 
interact.  The statistical structure of these interactions can 
be investigated by posing prediction problems. For example, 
we can see which subsets of genes in neighboring cells are 
most predictive of gene expression in target cells.  We can 
infer conditional independence structures by comparing 
prediction accuracy obtained from different subsets.   
Existing methods pursuing this vision use fixed-dimensional 
summaries of the attributes of neighboring cells, ignoring 
the number of neighbors and the interactions among them.  
We here propose deepST, a denoising graph convolutional 
autoencoder that accounts for these subtleties.  For a large 
MERFISH hypothalamus dataset, deepST imputes missing 
expression levels for response genes more accurately than 
other state-of-the-art methods including gradient boosting, 
attaining an 8.7% reduction in absolute error.  We also find 
that gradient boosting itself outperforms existing methods 
in this domain such as “Mixture of Experts for Spatial 
Signaling genes Identification”, attaining a 7.2% reduction in 
absolute error.  This error reduction is critical because we 
are using differences in predictive accuracy to uncover 
biological structure, and these differences in prediction 
accuracy due to biological causes are often on the order of 
1%.
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Currently, we have shown that using a 
deterministic graph decoder-encoder structure 
manages to increase response gene prediction 
accuracy. A natural next step is to learn a graph 
variational autoencoder that learns latent 
distributions rather than embeddings.

• We demonstrate an increased performance in 
response gene prediction using GCAEs. 

• Previous methods have been limited in 
neighborhood expression and learnable 
parameters. deepST is a state-of-the-art model 
that avoids these bottlenecks.

• While we demonstrate this method is effective, 
the fact that neighboring information does not 
significantly add to predictive performance is 
surprising.

• Given that cells communicate with one another, it could be 
useful to use neighboring expressions as inputs for 
predicting gene expression.

• Recent advancements in graph convolutional networks 
(GCNs) have allowed for richer prediction results on graph-
structured data. 

• We propose deepST, a graph convolutional autoencoder 
(GCAE).

The MERFISH dataset contains expressions of the following gene types:
• Control: “genes” associated with blank barcodes
• Ligand: genes responsible for creating ligands
• Receptor: genes responsible for creating receptors
• Response: genes whose expressions we want to predict

• Each tissue sample represented a graph, with nodes 
representing cells and edges representing cell-cell relationships.

• For convolutional layers, we use GMMConv, a convolution operator
with a parameterized patch that allows us to study a wider family 
of functions that can be modeled via a mixture of Gaussian kernels. 

• deepST better predicts response expressions 
than previous work.

• Use of convolution layers typically lowers loss 
for response expressions.

• deepST is a model that has a significantly larger 
amount of learnable parameters, leading to a 
better predictive performance.

• deepST requires only ≈25 minutes more of 
training time than its gradient boosting 
competitors and is ≈25x faster than MESSI.

• If deepST is used to only predict the 
expressions of a single celltype, the training 
time does not change, while for competing 
methods, the training time triples.

• Surprisingly, increasing the radius for cell 
neighbor consideration does not 
significantly change model performance.

• Masking 50% of response gene expressions at 
random yields an imputation problem for which 
our model performs well. 

• The model utilizes a deep architecture 
with a kernel size of 10 for pseudo-
coordinate learning.

A typical tissue of cells. The dashed red lines represent edges 
based on cell proximity (D. Draelants et al., 2015).
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