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Single-cell spatial transcriptomics measures gene expression for individual cells and pairs these measure-
ments with the positions of cells within a tissue sample. With spatial transcriptomic data, how neighboring
cells interact can be investigated by posing a pair of prediction problems. The first problem is to predict a
gene’s expression in each cell using the attributes of the cell. The second problem is to predict the same
responses using the attributes of the cell and its neighbors. Genes may then be ranked according to differ-
ence in predictive performance: genes for which the predictions from the second problem are more accurate
than the first may carry important spatial correlates. Highly ranked genes may warrant further investigation
through follow-up experiments.

Mixture of Experts for Spatial Signaling genes Identification (MESSI) is one method that adopts this general
approach [1]. However, MESSI is limited to using fixed-dimensional encoding of the attributes of neigh-
boring cells as predictors. MESSI encodes neighboring information as the sum of gene expressions over
all neighboring cells, with neighborhood structure determined by Delaunay triangulation. These encodings
ignore the number of neighbors and the interactions among them. We propose instead to encode neighboring
information as a graph, thus avoiding the limitations of fixed-dimensional encodings. Figure 1 illustrates the
benefit of using graph-based encoding instead of a fixed-dimensional encoding.

Methods We transform spatial transcriptomics data into a graph in which nodes represent cells and pairs
of nearby cells (within 60 pym) are connected by an edge. We augment this graph with node attributes
representing each cell’s type and the expression levels for certain genes (the “covariate genes”). We also
augment the graph with edge attributes representing the distances between nearby cells. Then, we fit a
network to predict expression of other genes (the “response genes”) using the full graph. We refer to this
network as DeepST. DeepST is a graph convolutional network (GCN), which is a neural network that takes
a graph as input, along with node attributes and edge attributes, and outputs node-level predictions [2].

We rank genes based on the contrast between DeepST’s predictions and those of a baseline prediction
method that bases its predictions only on the attributes of the cell (and not its neighbors). Our baseline
method is in fact a special case of DeepST, where no cells are connected by edges. In this special case,
DeepST is equivalent to a feed-forward neural network that takes as input the covariate gene expression
levels.
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Results We applied our method and alternative methods to the mouse hypothalamus spatial transcrip-
tomics dataset introduced in [3]. We used the expression levels of ligand and receptor genes as covariates;
these are known to facilitate intercellular communication. We trained each method to predict the expression
levels of all other genes. DeepST’s predictions achieved 0.327 mean average error (MAE), outperform-
ing a boosted regression tree prediction rule that relies on fixed-dimensional neighborhood encodings and
achieved 0.367 MAE. The boosted regression trees themselves outperformed MESSI, which achieved 0.442
MAE using the same fixed-dimensional encodings. All reported MAE values are for held-out data, and
hyperparameters were tuned using a separate validation set. Note that the MESSI regression algorithm was
specifically designed for this problem and this dataset, whereas the boosted regression tree method is an
off-the-shelf machine learning algorithm. In our experiments, we used the LightGBM [4] implementation
of boosted regression trees and configured it to target the MAE loss rather than the more common mean
squared error (MSE) loss. MESSI has previously been reported to outperform boosted regression trees in
terms of MAE. We speculate that in [4], boosted regression trees may have been trained to target MSE loss
rather than MAE, the metric used to report relative performance.

Our baseline method (i.e., DeepST without edges) achieved 0.350 MAE; unsurprisingly, this spatially ig-
norant baseline method had greater error than the spatially aware DeepST method. On the other hand, this
MAE is actually less than the MAE found in the two alternative spatially-aware methods (MESSI and gra-
dient boosting). This is concerning given that the purpose of estimating predictive models is to rank genes
based on the difference between a spatially aware model and a baseline. When spatially ignorant methods
outperform spatially aware methods, it becomes difficult to draw conclusions from the contrast. Any such
conclusions may say as much about the restrictive parametric form of the regressors as it does about the
ways cells interact. This highlights the necessity of using the best possible predictors when ranking genes
by comparing predictor accuracies.

Next, we explored DeepST’s ability to reveal genes that are spatially differentially expressed. For each
response gene, we compared DeepST’s predictive performance with the performance of the baseline esti-
mator. Figure 2 shows the differences. EBF3, CPNES5 and ERMN stand out, with DeepST achieving 3.2%,
3.8% and 5.0% reduction in mean absolute error, respectively. CPNES is already known to guide the spatial
organization of the murine brain [5]. EBF3 and ERMN may be genes to investigate further in validation
experiments.
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Conclusion Spatial transcriptomics provides a new lens for studying cell-cell communication, but there
are many potential analysis pitfalls. Posing paired prediction problems offers one way to interpret spatial
transcriptomics data, but this approach can fail when prediction algorithms are insufficiently flexible, either
due to a reliance on fixed-dimensional neighborhood encodings or due to the limited expressivity of the
prediction rule that maps neighborhood encodings to predictions. To obtain sufficiently flexible prediction
model, we developed DeepST, a graph convolutional network that learns on graphs defined from spatial
transcriptomics datasets. The contrast between DeepST’s predictions and the predictions from a baseline
regressor lacking access to cell neighborhood information provides insights into how cells interact.
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