Statistical Inference for Spatial Transcriptomics in the Age of Deep Learning

Roman Kouznetsov

University of Michigan

September 30, 2024

э

 QQQ

÷

◂**◻▸ ◂◚▸**

Outline

2 [Our Model \(DeepST\)](#page-9-0)

3 [Results](#page-12-0)

重

 298

K ロ ト K 伺 ト K ヨ ト K ヨ ト

2 [Our Model \(DeepST\)](#page-9-0)

[Results](#page-12-0)

重

 298

イロメス 御き スミメス ミメー

History of Gene Sequencing

Spatial Transcriptomics

- Spatial Transcriptomics (ST) ties cell expressions to cell positions.
- Prior to ST one could not get single-cell resolution of position and expression pairings.

Cell-Cell Communication (CCC)

- Cells communicate with one another, creating gene pathways.
- Cells send signals (ligands), and their neighbors collect those signals using receivers (receptors).
- When a cell receives a signal, its own expressions can change. We would like to model this behavior.

Figure: Target Cell (orange) receiving signals from signalling cells (green).

(□) (_□

 200

Graphs

- Graph: (Nodes, Edges)
- \bullet G = (V, E)
- Edges can be expressed in a matrix called an adjacency matrix (A).
- Each node can have attributes that contain pertinent information about a specific node.

Image Source: Andy Jahn

イロト イ押ト イヨト イヨト

 200

э

[Background](#page-1-0)

Graph Convolutional Networks (GCNs)

Image Source: Thomas Kipf

 \mathcal{A}^{\pm}

← ロ → → ← 何 →

 $\mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A}$

э

[Background](#page-1-0)

Gaussian Mixture Model Convolutions (GMMConv)

- A convolution that treats each neighboring signal as a mode in a GMM.
- \bullet K: number of Gaussian kernels
- Θ_k : the weights of a dense graph neural network
- $e_{i,j}$: pseudo-coordinates for the pair (cell *i*, cell *j*)
- \bullet w_k: weighting function (kernel)
- \bullet $\mathcal{N}(i)$: the neighbors of target cell i

$$
\mathbf{x}'_i = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \frac{1}{K} \sum_{k=1}^K \mathbf{w}_k(\mathbf{e}_{i,j}) \odot \mathbf{\Theta}_k \mathbf{x}_j
$$

$$
\mathbf{w}_k(\mathbf{e}) = \exp\left(-\frac{1}{2}(\mathbf{e} - \mu_k)^{\top} \Sigma_k^{-1}(\mathbf{e} - \mu_k)\right)
$$

Orange: Target Cell, Green: Neighboring Cells ◂**◻▸ ◂◚▸** ミドマミド 200

2 [Our Model \(DeepST\)](#page-9-0)

[Results](#page-12-0)

重

 298

イロメス 御き スミメス ミメー

Tissues as Graphs

- Tissue samples can be represented as graphs!
- Let cells represent nodes.
- **•** Let cell-cell communications represent edges.

 \bullet Given cells i and i, we consider these cells to have the following CCC structure:

$$
A_{ij} = A_{ji} = \begin{cases} 1 & d(i,j) \leq r \\ 0 & d(i,j) > r \end{cases}
$$

∢ 口 ≯ ∢ 何

[Our Model \(DeepST\)](#page-9-0)

DeepST

One-Dimensional Schematic of the DeepST Model

(University of Michigan) [ST for Deep Learning](#page-0-0) September 30, 2024 12/27

重

 299

イロト イ押ト イヨト イヨト

2 [Our Model \(DeepST\)](#page-9-0)

重

 298

イロメス 御き スミメス ミメー

Application on MERFISH Hypothalamus Data

- 181 tissues of ST Data
- 36 animals
- $\bullet \approx 1$ million cells
- 161 genes
	- 31 receptors (R)
	- \bullet 40 ligands (L)
	- 84 responses (genes that are neither ligands nor receptors) (Y)
	- 6 blanks
- \bullet $\mathcal{N}(L)$, and $\mathcal{N}(R)$ are the neighboring ligand and receptor expression respectively as defined by the graph.
- Goal: Model the regression $Y \sim \text{DeepST}(L, R, \mathcal{N}(L), \mathcal{N}(R))$

 Ω

イロト イ何 トイヨト イヨト ニヨー

MERFISH Results: Improved Prediction

Figure: Without Cell Types Figure: With Cell Types

4 ロ ▶ (母

Figure: MSE for models without cell types in input (left) and with cell types in input (right).

 200

ヨメ イヨ

41

MERFISH Results: Spatially Dependent Genes

Looking at each response gene individually, we can see which genes are more accurately predicted with a spatial model and by how much.

 200

Semi-Synthetic Experiments

- Simulated expressions with real positions collected from ST data.
- Allows us to evaluate a wide array of expression circumstances to stress test model performance.
- For the notation going forward, we represent X_{ce} to be the expression of gene g in cell c .
- For the semi-synthetic experiments that follow we simulate all gene expressions in the dataset $X_{\text{cg}} \forall c, g$.
- In our cases, X_{c0} is given a special relationship with the other expressions and is the only response gene we model for simplicity.
- In all of our experiments, we simulate the data with a true radius of $30 \mu m$.

 Ω

イロト イ何 トイヨト イヨト ニヨー

Synthetic Experiment 1

Figure: Synthetic Experiment #1 Test Losses

\n- \n
$$
X_{cg} \sim \text{NB}(1, 0.5)/5
$$
\n
\n- \n
$$
X_{c0} = \mathbb{1} \left(\sum_{c' \in \mathcal{N}(X_c)} X_{c'1} > 1 \right) \times \sum_{c' \in \mathcal{N}(X_c)} X_{c'1}
$$
\n
\n

Synthetic Experiment 2

Figure: Synthetic Experiment #2 Test Losses

\n- \n
$$
X_{cg} \sim \text{Exp}(10)
$$
\n
\n- \n
$$
X_{c0} = X_{c0} + \mathbb{1} \left(\sum_{c' \in \mathcal{N}(X_c)} X_{c'1} > 1 \right) \times \sum_{c' \in \mathcal{N}(X_c)} X_{c'1}
$$
\n
\n

(University of Michigan) [ST for Deep Learning](#page-0-0) September 30, 2024 19/27

 \circ

Synthetic Experiment 3

Figure: Synthetic Experiment #3 Test Losses

\n- \n
$$
\mu_1, \ldots, \mu_G \sim N(20, 4)
$$
\n
\n- \n $X_{cg} \sim NB(\mu_g, 0.5)/60$ \n
\n- \n $X_{c0} = \sum_{X_{c'} \in \mathcal{N}(X_c)} \sqrt{X_{c'1}} \left(1 - \frac{\sinh^{-1}(5.863 \cdot d(X_c, X_{c'}))}{5.863} \right)$ \n
\n- \n $\mu_{\text{diversity of Michigan}}$ \n
\n- \n ST for Deep Learning September 30, 2024\n
\n

Causal Discovery with Measurement Error

Figure: A probabilistic graph that shows why measurement error can prevent causal inference. White nodes represent the true values of covariates while grey nodes indicate noisy covariates resulting from measurement error.

 200

イロト イ押ト イヨト イヨト

False Discovery Synthetic Experiment

Figure: Target cell (left), Signalling cell (right)

- In the above simplified example, $R\perp B|A$.
- Therefore, an ideal model would inform us that spatial information is not relevant for inferring R.
- This can help us avoid spurious conclusions [ab](#page-20-0)[ou](#page-22-0)[t](#page-20-0) [sp](#page-21-0)[a](#page-22-0)[t](#page-11-0)[i](#page-12-0)[a](#page-23-0)[l](#page-24-0) [d](#page-11-0)[e](#page-12-0)[p](#page-23-0)[e](#page-24-0)[nd](#page-0-0)[enc](#page-26-0)e.

(University of Michigan) [ST for Deep Learning](#page-0-0) September 30, 2024 22/27

False Discovery Synthetic Experiment (Results)

Figure: Ratio of spatially aware loss to spatially ignorant loss across models. Best result for each setting is marked in bold.

 QQ

イロト イ押ト イヨト イヨトー

Leveraging GVAEs

$$
\rho(\mathbf{z}) = \mathcal{N}(0, I) \longrightarrow \rho(z_c) = N(0, I)
$$

\n
$$
(\mu, \sigma) = \text{Encoder}_{\phi}(\mathbf{x}) \longrightarrow (\mu_c, \sigma_c) = \text{DeepST}(X_{c,L}, X_{c,R}, X_{\mathcal{N}(c),L}, X_{\mathcal{N}(c),R})
$$

\n
$$
q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mu, \text{diag}(\sigma)) \longrightarrow q(z_c|X_{c,L}, X_{c,R}, X_{\mathcal{N}(c),L}, X_{\mathcal{N}(c),R}) = N(\mu_c, \text{diag}(\sigma_c))
$$

\n
$$
(\mu_I, \sigma_I) = \text{Decoder}_{\theta}(\mathbf{z}) \longrightarrow (\mu_c, I, \sigma_c, I) = \text{DeepST}(z_c, z_{\mathcal{N}(c)})
$$

\n
$$
p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mu_I, \text{diag}(\sigma_I)) \longrightarrow p(X_c|z_c, z_{\mathcal{N}(c)}) = N(\mu_c, I, \text{diag}(\sigma_c, I))
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @ (University of Michigan) [ST for Deep Learning](#page-0-0) September 30, 2024 24/27

2 [Our Model \(DeepST\)](#page-9-0)

[Results](#page-12-0)

重

 298

イロメス 御き スミメス ミメー

Conclusion

- **1** DeepST is a deep graph convolutional network model that makes inferences on ST data.
- **2** DeepST addresses concerns with model selection by directly working with graphs and treating signals from neighboring cells as learnable.
- ³ DeepST's spatial awareness has a stronger relative prediction improvement in contrast to models that do not work on graph inputs directly.
- ⁴ For spatially independent genes, our method can select the appropriate corresponding model, avoiding spurious conclusions about spatial dependence.

 QQ

イロト イ何 トイヨト イヨト ニヨー

Future Work

- **1** DeepST can naturally be extended to a graph VAE (GVAE) for better uncertainty quantification.
- ² Latent features discovered by a GVAE could identify useful features that are not directly observable.
- ³ Reduce memory footprint of the model.

 QQ

イロト イ押 トイヨ トイヨ トー